
Abstract. It is shown that a supposed catastrophe of
Bader’s theory of atoms in molecules, suggested by
Cassam-chenaı̈ and Jayatilaka [Theor Chem Acc (2001)
105: 213] is merely a consequence of the approximate
character of the adiabatic Born–Oppenheimer theory of
molecular structure, and that nonadiabatic approaches
could be in accordance with Bader’s ideas.
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The theory of atoms in molecules (AIM), based on the
topological properties of electronic densities, developed
by Bader and coworkers [1, 2], is a modern tool of
analysis of electronic structure of molecules. In essence,
it states that the one-electron density, q, of a molecule
can be partitioned into atomic contributions delimited
by surfaces of zero flux of ~rq. Many applications
confirm the usefulness of this theory for a variety of
problems. Although there are many AIM theories, here
AIM will be taken to mean Bader’s theory.

Cassam-chenaı̈ and Jayatilaka recently claimed, in
this journal [3], to have found some fundamental prob-
lems with AIM theory. Most of them seem to concern
ambiguities that could be accounted for by appropriate
restrictions in the formal structure of the theory. Some
have been analyzed by Bader hymself in a recent article
[4]. But a particular criticism in Ref. [3], namely that
concerning excited vibrational levels of molecules, re-
mains unanswered and seems quite significant, since it
calls into question the applicability of the theory to these
states. The purpose of this article is to show that the

authors of Ref. [3] are wrong in this particular point, and
that a proper view of the problem is not in disagreement
with AIM theory.

Summarizing the criticism, the authors of Ref. [3]
assume that a state, n, of a molecule can be put exactly,
or to a good approximation, in the common product
form,

Wnð~rr;~RRÞ ¼ /nð~rr;~RRÞvnð~RRÞ ; ð1Þ
where /n is the electronic wavefunction that depends
dynamically on the electronic coordinates, ~rr, and
parametrically on the nuclear coordinates, ~RR, and vn is
the nuclear (ro) vibrational wavefunction. In this case,
the density is the product

q ¼ qelqnuc : ð2Þ
The existence of a node in an excited nuclear function at

some configuration ~RR
0

implies qð~RR0Þ ¼ 0, so (according
to the authors of Ref [3]), AIM theory predicts that the
system has no atom, no bond and no structure at

configuration ~RR
0
. It is further considered in Ref. [3] that

if a sum of terms like Eq. (1) is needed, one term will
always be dominant, so the problem of defining a

molecular structure at ~RR
0

remains. It is shown, in what

follows, that these arguments are wrong.
First, it has to be noted that Eq. (1) does not specify

unambigously what the authors mean by the total
wavefunction, since there are various adiabatic ap-
proaches based on such product functions, the clamped-
nuclei Born–Oppenheimer (BO) and the common adia-
batic (BO plus diagonal corrections [5]) approximations
being those that address the catastrophe, because of
their strong restrictions. In particular, they admit a
common potential-energy surface for various vibrational
states, which generate orthogonal solutions with nodes.

The cases that must be considered are those that go
beyond the BO and related adiabatic approximations.
The question of whether a product function like Eq. (1)
could be exact was considered some decades ago by
Hunter [6, 7] and more recently by Mohallem and Tostes
[8]. The approach of the last work, in which the reduc-
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tion of a series of functions like Eq. (1) to a single term is
discussed, in the case of a diatomic molecule, seems to be
appropriate to the present analysis and is followed here.
An appropriate starting point is to consider the Born–
Huang (BH) [9] expansion of the total wavefunction,

Wð~rr;~RRÞ ¼
X
k

/kð~rr;~RRÞvkð~RRÞ ; ð3Þ

where /kð~rr;~RRÞ are eigenfunctions of some electronic
Hamiltonian and its parametric dependence on ~RR comes
simply from demanding that it is normalized for all ~RR
[10]. In the body-fixed coordinate system in which the
electron positions are referred to the center of mass of
the nuclei, the resulting internal Hamiltonian is

H ¼ � r2
R

2lAB

�
X
i;j

1

2M
~ri �~rj þ HBO ; ð4Þ

where HBO ¼ �
P

i
1

2mr2
i þ V is the common BO Ham-

iltonian, (i,j) represent electrons of mass m; lAB is the
reduced mass of the nuclei A and B and M is their total
mass.

Following the common procedure of substituting
Eqs. (3) and (4) into the Schrödinger equation, inte-
grating over the electronic coordinates, and separating
to the right the nondiagonal terms, the usual set of
coupled equations is obtained [9],

� r2
R

2lAB

vk þ UkðRÞvk � Ekvk

¼
X
l 6¼k

Hkl �
1

lAB

ð~rRÞkl �~rR

� �
vl ; ð5Þ

with

UkðRÞ ¼ Hkk ; ð6Þ
where the property that ð~rRÞkk ¼ 0 [10] has been used,
with the notation ðOÞkl 	 h/kjOj/li for a general
operator O. Now, since the vibrational functions vk
depend only on ~RR, the right-hand side of Eq. (5) can be
manipulated, yielding

� r2
R

2lAB

vk þ UkðRÞvk � Ekvk

¼
X
l 6¼k

H � 1

lAB

~rRvl �~rR

� �
kl

: ð7Þ

Thus, complete decoupling of the BH equations will be
accomplished only if the electronic functions satisfy the
pseudoeigenvalue equation

ðH � 1

lAB

~rRvk �~rRÞ/k ¼ �k/k : ð8Þ

It becomes clear that the electronic functions /k will be
(exact or approximate) eigenfunctions of some electronic
part, Hel, of H (Hel ¼ H corresponding to the variational
adiabatic approach [10]) only at the extrema of vk, or in

their vicinity, where ~rRvk ’ 0. These seem to be the

cases that match the hypothesis of Ref. [3] that the
product wavefunction, Eq. (1) is, respectively, exact or
dominant in a BH series, and it is seen that they are far

from corresponding to nodes in the nuclear wavefunc-
tion. Near possible nodes of vk, ~rRvk may be very large
and the product function is no longer exact nor
dominant.

This last conclusion might seem surprising, in view of
the accuracy of most BO calculations based on prod-
uctlike wavefunctions. Further, it brings out an inter-
esting question that concerns the chemical meaning of a
BH wavefunction made up of a series of nondominant
terms. Although this still seems to be an open question,
some insight was given some time ago by Czub and
Wolnievicz [11]. They considered an exact factorization
of the m ¼ 3;Rþ

g state of the H2 molecule as

Wð~rr;~RRÞ ¼ /ð~rr;~RRÞvð~RRÞ, where the electronic factor, /, is
no longer restricted to be an eigenfunction of some
electronic Hamiltonian. This ansatz was based on
an older hypothesis of Hunter [6], concerning the
factorization of the density into marginal, qð~RRÞ, and

conditional, qð~rr;~RRÞ, factors, suggested by probabilistic
arguments. The authors of Ref. [11] showed that, in the
nuclear configurations where the adiabatic BO vibra-
tional function has nodes, the state-dependent nonadi-
abatic potential UðRÞ ¼

R
/�H/ d~rr has sharp (deltalike)

singularities, which turn it into a form critically different
from the adiabatic BO one, but, on the other hand,
modify the total energy and the wavefunction itself only
in second order. They further showed that the nonadi-
abatic vibrational function has no nodes and no zeros.
This work therefore suggests that the BH series of
nondominant terms, in the vicinity of the nodes of the
adiabatic vibrational wavefunction, retains the chemical
picture of the molecule, as it must do.

Although not formally proved, it is expected that the
nonadiabatic approach of Czub and Wolnievicz [11]
corresponds to the exact solution of the coupled Eqs. (7)
and (8). In fact, in the table of Ref. [11], it is seen that the
differences between the adiabatic and nonadiabatic po-
tentials vanish exactly where the vibrational function has
maxima or minima. This theoretical prediction of the
present work is thus numerically confirmed by the results
of Ref. [11].

In conclusion, the catastrophe of AIM theory due
to the factorization of the molecular wavefunction,
suggested in Ref. [3], does not actually occur, if the
appropriate molecular approach is considered. On the
other hand, it is unlikely that large-scale beyond-BO cal-
culations will be feasible in the near future. Thus, it seems
that applications of AIM theory to conventional excited-
state electronic structure calculations must be done with
careful consideration of the points discussed here.
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